
Security Analysis of Automotive Architectures using
Probabilistic Model Checking

Philipp Mundhenk, Sebastian Steinhorst,
Martin Lukasiewycz

TUM CREATE, Singapore
<firstname.lastname>@tum-create.edu.sg

Suhaib A. Fahmy
School of Computer Engineering,

Nanyang Technological University, Singapore
sfahmy@ntu.edu.sg

Samarjit Chakraborty
TU Munich, Germany
samarjit@tum.de

ABSTRACT
This paper proposes a novel approach to security analysis of automo-
tive architectures at the system-level. With an increasing amount of
software and connectedness of cars, security challenges are emerging
in the automotive domain. Our proposed approach enables assessment
of the security of architecture variants and can be used by decision
makers in the design process. First, the automotive Electronic Con-
trol Units (ECUs) and networks are modelled at the system-level
using parameters per component, including an exploitability score
and patching rates that are derived from an automated or manual
assessment. For any specific architecture variant, a Continuous-Time
Markov Chain (CTMC) model is determined and analyzed in terms
of confidentiality, integrity and availability, using probabilistic model
checking. The introduced case study demonstrates the applicability
of our approach, enabling, for instance, the exploration of parameters
like patch rate targets for ECU manufacturers.
Categories and Subject Descriptors: C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems
General Terms: Algorithms, Design, Security
Keywords: Security, Automotive, Model checking, Networks

1. INTRODUCTION & RELATED WORK
Within the past two decades, the amount of electronics and soft-

ware in automotive systems has increased rapidly. Today, top-of-the-
range vehicles comprise up to 100 Electronic Control Units (ECUs)
and several heterogeneous bus systems, implementing a variety of
applications ranging from comfort to active safety functions.

While functional and safety requirements were always fundamental
considerations in the design of automotive architectures, security is
becoming a major challenge [1] for many emerging applications.
Consumers and car manufacturers understand the benefits of cloud-
connected services in vehicles, making modern infotainment systems,
adaptive route planing, or over-the-air updates of software possible.
However, it is also well understood that these applications present the
risk of vulnerability to hacking attacks.

This work was financially supported in part by the Singapore Na-
tional Research Foundation under its Campus for Research Excel-
lence And Technological Enterprise (CREATE) programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15 June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2744906.

3G

PA

PS

GW
CAN1 CAN2

m
-

m′

�

Figure 1: Illustration of a possible exploit in an automotive architecture. In
normal operation, the park assist (PA) controls the power steering (PS) with
the message stream m that is sent via the gateway (GW). If the telematics
module (3G) is hacked (-), a message stream m′ with an identical identifier
ID(m) = ID(m′) can control the steering (�).

In current approaches, vehicle networks are shielded with firewalls
at the external interfaces to ensure security. However, internal security
is often not considered. Upon breach of a firewall, the network is
openly accessible to the attacker. Such an example attack is illustrated
in Figure 1.

Studies show that traditional automotive architectures that were
not designed with security in mind are highly vulnerable [2, 3]. In
particular, hacking a safety-critical control function can have severe
and even fatal consequences. In [4], different attacks and their in-
fluence on a control function are modeled, showing that it is easily
possible to tamper with driver assistance functions if their commu-
nication is not secured. Novel techniques are developed to integrate
safety and security, protecting in-vehicle communication networks
such as Controller Area Network (CAN) [5] and FlexRay [6]. In the
automotive domain, encryption and authentication for internal buses
has to be implemented efficiently, an approach to authentication has
been proposed in [7].

While current state-of-the-art approaches for security in automo-
tive systems consider separate components, our approach is targeted
at the system-level. Towards the analysis of systems, model checking
has been applied to verify computer networks [8] and protocols [9].
These approaches only detect system vulnerabilities if each single
component vulnerability is modeled. However, vulnerabilities are of-
ten not known at design time and, therefore, a probabilistic approach,
as proposed in [10] for Denial-of-Service (DoS) exploits, can abstract
this uncertainty. In [10] an approach to analyzing security protocols
with probabilistic model checking based on attack cost is proposed.
By contrast, we are quantizing the security of all traffic, based on
the underlying automotive architecture, including DoS attacks on
protocols.
Contributions of the paper. In this paper, we present a method-
ology for the security analysis of automotive architectures at the
system-level. We take advantage of the fact that ECU topologies,
communication networks and message streams are known at design
time. Using probabilistic model checking enables us to quantify

philipp.mundhenk
Typewriter
This is a reprint for non-commercial use on www.mundhenk.org.

the security of automotive architectures in terms of confidentiality,
integrity and availability.

In Section 2, we outline the proposed framework which comprises
the following three steps:
1. The considered automotive architecture is transformed into a

Markov model.
2. An assessment of components is performed to determine the tran-

sition rates for the Markov model.
3. The definition of a property for the model checker is carried out

to determine an appropriate security value.
With the complete Markov model and property, a probabilistic model
checker determines security values for the architecture under consid-
eration.

In Section 3, a detailed description of our methodology is given.
We increase the granularity of an architecture under test to the sub-
module level by including all network interfaces, bus systems, ECUs
and messages. These submodules are converted into a Markov model
to transform the architecture into a graph. The edges of the graph
are weighted by probabilistic rates, representing exploitability and
patching rates of each submodule. We propose to determine the rates
by a standardized security assessment of every submodule separately.
Using the Markov model with assigned rates, we define properties
to evaluate the architecture. Our framework allows the definition
of properties for any submodule in the architecture, thus enabling
us to evaluate every security aspect relevant while considering the
complete architecture.

The results of this analysis for a set of example architectures are
presented in Section 4. For three architecture alternatives, we obtain
and compare results. We also show the possibility to explore different
exploitability and patching rates for a given architecture. Finally,
we discuss the general applicability and scalability of the proposed
approach before concluding the paper in Section 5.

2. FRAMEWORK
In the following, we give an overview of our analysis approach.

After the problem description, we explain the main steps of our
analysis flow.

2.1 Problem Description
Automotive networks consist of a high number of ECUs that per-

form dedicated tasks such as sensing, computation, or actuation.
Functions are implemented in a distributed fashion that requires com-
munication via different shared bus systems like CAN and FlexRay.
Particularly, the communication via shared buses using predefined
and often unencrypted message streams becomes a major issue once
the system is compromised.

Generally, components or functions are developed independently
in the automotive domain and are subsequently integrated into the
architecture. While security aspects might be considered for use cases
at subsystem-level, vulnerabilities at system-level are often not taken
into account. As a remedy, the proposed framework is designed to
answer the following questions during design and integration:
• What influence do component vulnerabilities have on the security

of a specific function?
• Is a certain architecture design decision beneficial in comparison

to an alternative in terms of security?
• How much effort should be invested in the consideration of secu-

rity during implementation of specific components?
Note that we are considering system-level security, abstracting aspects
of internal ECU security, such as secure boot, key storage, etc.

Since automotive architectures are highly heterogeneous systems
comprising many different components, it is mandatory to model all
important aspects at the system-level. For instance, communication
systems used in vehicles differ greatly in their support of security
aspects, particularly in terms of availability. Thus, appropriate models
for these communication systems are required. ECUs might also be
connected to multiple communication buses, resulting in different po-
tential attack paths with varying probabilities. Finally, to characterize
the security properties of ECUs and other components, it is necessary
to quantify the rates at which they can be exploited and how fast they
can, in turn, be patched. For this purpose, security assessment and

component
security
scores

P =? [F <= 1 x]

Probabilistic Model Checking

A
rc

hi
te

ct
ur

e
M

ar
ko

v
M

od
el

R
es

ul
ts

A
ss

es
sm

en
t

Pr
op

er
tie

s

Figure 2: Illustration of the proposed framework: (1) The architecture is
transformed to a Markov model, (2) transition rates are determined by a
security assessment per component and (3) a property for the model checker
is defined. Finally, the probabilistic model checker returns quantified results
that support decision making at the system-level. system-level.

Automotive Safety Integrity Level (ASIL) values should be taken into
account when modeling the system.

2.2 Analysis Flow
Our security analysis approach for automotive architectures is

outlined in Figure 2. It comprises three steps: Model transformation,
component assessment, and property definition. Finally, the security
of an architecture is determined with a probabilistic model checker.
Model Transformation. To be able to process the architecture in
terms of security, we break it down into the relevant components.
These include buses, ECUs, messages, interfaces, etc. For each com-
ponent, a Markov model defines the exploitability and patching rate.
Finally, the Markov models are combined into a single system that en-
ables probabilistic model checking. Depending on the system under
consideration, this transformation can be flexibly extended or adapted.
We propose a specific transformation approach in Section 3.1.
Component Assessment. Correspondingly to the transformation of
the architecture, it is necessary to assess the individual components
in terms of their exploitability and patching rates. These values
determine the transition rates of the Markov model. For exploitability,
we propose to use the Common Vulnerability Scoring System (CVSS)
to assess the vulnerability of components relying on an established
standard [11]. Considering the ASIL values of components, we
observe that patching rates strongly depend on safety requirements
of components that might require costly re-testing and validation
in case of software changes. These rates can be adapted by the
user, depending on development processes and existing data. While
the assessment should ideally be performed on subcomponent level,
incorporating ECU security elements, we use a simplified component-
based approach. The granularity of the approach can be scaled up to
the required level (see Section 5). The component assessment with
CVSS and ASIL is detailed in Section 3.2.
Property Definition. By defining specific properties, we are able
to investigate certain aspects of the architecture in terms of security.
In contrast to a steady-state analysis, which analyzes convergence
to a steady state of the system at some point in time, this analysis
is significantly more powerful. Thus, a property can for instance
be the cumulated time that a function is exploitable within a period
of 10 years. The definition of appropriate properties is detailed in
Section 3.3.

s0 = (0, 0, 0)

s1 = (1, 1, 0)

s2 = (1, 1, 1)

η3G

ϕ3G

ηmc

ϕmcϕ3G

Figure 3: Illustration of a simplified Markov model that analyzes the ex-
ploitability of message m in the architecture in Fig. 1 in terms of confidentiality
with nmax = 1. The states are composed by s = (s3G, sCAN1 , smconf). Each
atomic state si represents how many exploits for the components 3G, CAN1,
and m exist.

3. METHODOLOGY
In this Section, we describe the steps required to create a Markov

model from an architecture (Section 3.1), weight the edges of the
model by a component assessment (Section 3.2) and define properties
to analyze the model (Section 3.3).

When creating a model from an architecture, we model ECUs
and interfaces by the number of exploits existing. New exploits are
discovered (e.g., by security researchers) with rate η and exploits are
patched (e.g., by Over-The-Air (OTA) updates) with rate ϕ. Networks
and buses are considered passive, depending on the least secure state
of all attached ECUs. Messages in turn are modeled based on the
security principles of confidentiality, integrity and availability:
• Confidentiality describes the protection from reading messages by

an unauthorized entity.
• Integrity describes the protection from creation and modification

of messages.
• Availability describes protection from interruption or removal of

messages.
Each of the principles is analyzed separately, depending on the pro-
tection of the message (none, cryptographic hash, encryption) and
the communication networks employed for transmission.
Example. To illustrate this process, consider a minimal architecture
with a telematics ECU (3G) attached to a CAN bus (compare 3G in
Figure 1). The CAN bus is used to transmit a message m which is
neither sent nor received by the telematics ECU. After transformation
of this architecture into a Markov model, we obtain the model shown
in Figure 3. This is a very simplified transformation, not considering
all ECUs, interfaces or message states. Further, we only consider one
exploit per module.

Analyzing this model, we see that from a secure state (s0), an
exploit is discovered in the telematics unit with rate η3G. Once an
exploit is discovered, the CAN bus is immediately considered to
be exploitable (s1). The telematics unit can be patched with rate
ϕ3G. If this does not happen and an exploit for the protection of
message m, which the telematics ECU does not have the keys to, is
discovered (with rate ηmc), we advance to state s2 and the message
can be exploited. From now on, the contents of the message m cannot
be considered confidential any longer, as the contents could be altered.
To remedy this situation, the message protection and the telematics
unit should be patched. In our example model this happens with rates
ϕmc and ϕ3G, respectively. Alternatively, the access for attackers can
be denied by patching the telematics unit with rate ϕ3G.

This is a very simplified example, requiring only a small subset of
our proposed modeling techniques. In the following, we will explain
the full set of transformation rules, as well as the assessment of com-
ponents and the analysis of the model with probabilistic properties.

3.1 Model Transformation
Transformation of an automotive communication architecture into

a Markov model is required to be able to analyze the communication
architecture with probabilistic methods. Our transformation considers
all communication participants (i.e. ECUs) and interconnections
(such as bus systems and networks). We further separate ECUs into
interfaces for every communication system in order to analyze the
impact of different communication systems. Furthermore, we analyze
messages transmitted in the system.

Terminology. To model an architecture for security analysis, we
require the set of all ECUs e ∈ E and all internal buses b ∈ B. We also
require the set of all interfaces Ie of every ECU e. An interface ib ∈ Ie
connects an ECU e with a bus or an external network b ∈ Be. Thus,
we define an ECU as e = {Ie, Be} and a bus as b = {Eb}, where Eb is
the set of ECUs on bus b. To analyze a message m, the sending ECU
sm, the set of receiving ECUs Rm and the set of buses Bm over which
the message is transmitted, are required: m = {sm,Rm, Bm}. This data
is obtained from the architecture, including the fully scheduled set
of messages. The maximum number of exploits considered for every
module at one point of time is defined as nmax.
ECUs& Interfaces. To model the architecture, every ECU needs to
be split into interfaces. For each interface ib, the exploitability ε(ib) ≥
0 is analyzed separately, based on the probabilistic exploitability rate
ηib increasing the number of exploits n if the bus is exploitable:

ε(ib) = n
ηib
−−→ ε(ib) = n + 1 (1)

if ε(b) > 0,with ib ∈ Ie, 0 ≤ n < nmax

The resulting value for exploitability describes the number of par-
allel exploits ε(e) existing in the ECU, ε(i) in the interface or ε(m) for
the message. We use nmax to limit the maximum number of exploits
and thus reduce the complexity of our model. The inverse of this
relationship defines the patching of a security flaw in an interface ib,
based on the patching rate ϕib :

ε(ib) = n + 1
ϕib
−−→ ε(ib) = n (2)

if ε(b) > 0,with ib ∈ Ie, 0 ≤ n < nmax

The exploitability of each ECU ε(e) is based on the exploitability
of all interfaces of this ECU:

ε(e) =
∨
i∈Ie

ε(i) (3)

Buses& Networks. Similarly, the exploitability ε(bc) of a CAN bus
bc is dependent on the exploitability of every attached ECU:

ε(bc) =
∨

e∈Ebc

ε(e) (4)

In case a FlexRay bus b f is used, additionally, the bus guardian
ibg needs to be exploited, before an ECU e can transmit freely on the
bus:

ε(b f) =
∨

e∈Eb f

ε(e) ∧ ε(ibg) (5)

Networks or buses directly connected to the internet, such as 3G,
are always considered to be exploitable, as attackers have continuous
access to these. We set a constant exploitability value of 1 to model
this property:

ε(b3G) = 1 (6)
Messages. The exploitability of a message is subdivided into the
impact categories availability A, integrity G and confidentiality C.
While availability is highly dependent on the employed communica-
tion system, integrity and confidentiality are based on the message
protection. Specifically, cryptographic hashing and encryption ad-
dress these categories. When using a CAN bus, availability can not
be guaranteed if any of the buses used for message transmission are
exploited:

A(m) = ¬
∨

b∈Bm

ε(b) (7)

Confidentiality and integrity of a message m can not be guaranteed
if the sending or receiving ECUs are exploited, even if the message is
encrypted. To ensure real-time performance, we assume symmetric
encryption, such that the key for message encryption is stored both
on sending and receiving ECU. Secure key storage is not analyzed
here, but could be integrated as a submodule into the ECU module.
Confidentiality C and integrity G behave similarly, but depend on
the protection mechanisms used for the respective message m. In
the remainder of this subsection, we show the transformations for
confidentiality. The rules apply identically for message integrity by
replacing C(m)/ηC /ϕC in the equations by G(m)/ηG/ϕG.

Confidentiality of a message can be violated if the sender or re-
ceivers are exploitable:

C(m) = ¬
∨

e∈{sm ,Rm}

ε(e) (8)

Furthermore, confidentiality can be attacked by any ECU on any of
the buses used for transmission of m. The probability of such an
attack depends on the strength of the employed encryption algorithm
and its implementation. To describe this behavior, we define the
following relation:

C(m) = 1
ηC
−−→ C(m) = 0 if

∨
b∈Bm

(ε(b)) = 1 (9)

Consequently, a message is not exploitable, if all ECUs on all trans-
mitting networks are not exploitable.

The inverse of the above operations describes the patching of a
flaw in the message encryption/hashing, and is described as:

C(m) = 0
ϕC
−−→ C(m) = 1 if

∨
b∈Bm

(ε(b)) = 1 (10)

This concludes the transformation of the architecture into the states
of a Markov model.

3.2 Component Assessment
To be able to analyze the Markov model generated in the previous

section, we need to assign weights to the edges. These rates represent
the probability over time that a device is exploitable and the rate in
which a device can be patched.
Exploitability Rates. In this work, we determine rates via an ad-
justed version of the CVSS [11]. CVSS has been developed as an
open standard to assess vulnerabilities in software systems and is
maintained by the National Institute of Standards and Technology
(NIST). It can generate a score for the security of a component, based
on the assessment of units in multiple subscores and categories. The
criteria used in the exploitation subscore are similar to the criteria
required for interfaces in the automotive domain. We utilize the ex-
ploitation subscore (see Table 1) and adjust it further to adapt it to the
automotive domain. Based on the scores for the subcategories, we
calculate the exploitability score

σ = 20 · AV · AC · Au. (11)
Based on the exploitability score σ, we calculate the rate

η = σ − 1.3. (12)
We normalize the exploitability rate to 1 year.

As an example, we illustrate the assessment of the 3G interface
of the telematics ECU. As this device is connected to the internet,
the Access Vector is across multiple networks (AV = 1). Due to its
open surface, we assume that the device is hardened against attacks,
thus the access complexity is high (AC = 0.35). To access the device,
we further assume that multiple authentication steps are required
(Au = 0.45). From Equation (11), we determine σ = 3.15. Based on
Equation (12), the exploitability rate can be determined as η = 1.85.

In the remainder of the paper, we use these CVSS-based assess-
ments for the interfaces of all ECUs.
Patching Rates. The amount and rate in which patches can be sup-
plied to the vehicle is dependent on many factors. Firstly, the de-
velopment time for a patch sets an upper bound to the patching rate.
Additionally, the amount of tests required can be extensive, if a safety-
related function needs to be altered to implement the security patch.
Thus, we base our assignment of patching rates on the ASIL level
of the functionality to be patched. The ASIL-dependent patching
rates are shown in Table 2. While a safety-related device, such as
the gateway (GW) can only be patched at relatively long intervals,
non-safety-related functions, such as a telematics unit (3G), can be
patched at short intervals, as fewer tests are required.

Using such transition rates in the Markov model allows us to
analyze it on a time basis, resulting in a Continuous-Time Markov
Chain (CTMC).

3.3 Property Definition
After creating a CTMC model from the architecture and assigning

transition rates as discussed in the previous subsection, we need to

Category Subcategory Value
(Description)

Access Vector L (Local) 0.395
(AV) Accessible only on device

A (Adjacent Network) 0.646
Accessible via directly attached bus
N (Network) 1
Accessible via any number of networks

Access Complexity H (High) 0.35
(AC) Device is generally secured

M (Medium) 0.61
Device is partially secured
L (Low) 0.71
Device is not secured

Authentication M (Multiple) 0.45
(Au) Multiple authentication steps required

S (Single) 0.56
One authentication step required
N (None) 0.704
No authentication is required

Table 1: The categories for the CVSS exploitation subscore and our interpre-
tation of these for automotive networks (adapted from [11]).

define the goals of our analysis. These goals are defined as properties
of the model. A common property evaluated on CTMC models is
a steady-state analysis. Here, the probabilities to be in each state
at any sampled point in time can be calculated with conventional
matrix operations. Consider the example in Figure 3. With rates
ϕ3G = ϕmc = 52 (weekly) and η3G = ηmc = 2 (bi-annually), we obtain
the transition rate matrix:

Q =

(
−s0 s1 − s0 s2 s0 s1 s0 s2

s1 s0 −s1 s0 − s1 s2 s1 s2
s2 s0 s2 s1 −s2 s0 − s2 s1

)
(13)

=

(
−2 2 0
52 −54 2
52 52 −104

)
(14)

Note that the values on the diagonal of the matrix are the negative
sum of the rates of the row. The steady-state solution πQ = 0 yields a
stationary distribution

π =
(
0.96296 0.036338 0.000699

)
. (15)

Consequently, at any given point in time, the probability to be in state
s2 where m is exploitable, is 0.0699%. This stationary information,
however, is not conclusive for practical security questions. Thus, we
are interested, e.g., in the probability that the model reaches state s2
at least once within one year. To express this for CTMCs, we need to
define a reward-based property, counting each occurence of the state.
We follow the syntax in [12] and define: R{s2} =? [F < 1].

To evaluate such properties, model checking algorithms have to be
applied. Using these algorithms, we can analyze every state of each
submodule generated in the above steps for reachability or probability.
Reachability constraints, as used in conventional model verification,
can only define security in absolute terms (e.g. P =?[F ECU1 > 0] or
Can ECU 1 be exploited at any point in time?). Security, however,
can not be defined in absolute terms. Assuming absolute security of
any device is not realistic. Thus, we have to define properties which
allow us to draw conclusions based on the underlying time basis of
the model.

An example question for cumulative probabilities could be: How
long is message m potentially exposed to an availability attack within
1 year? For this question we are looking for the cumulative time of
all occurrences of A(m), expressed through rewards:

R{A(m) > 0} =? [F < 1] (16)

4. EXPERIMENTAL RESULTS
In this section, we discuss our experimental setup and show the

potential of our analysis methodology by applying the framework to
a case study based on the three architectures illustrated in Figure 4.
The analysis of the architectures, modeled with the methodology

3G

PA

PS

GW
CAN1 CAN2

m

Architecture 1

3G

PA

PS

GW
CAN1 CAN2

m

Architecture 2

3G

PA

PS

GW
FR CAN2

m

Architecture 3

GW - gateway, PS - power steering, PA - park assist, 3G - telematics unit, CAN - controller area network, m - message stream, FR - FlexRay
Figure 4: Three architectures used to compare different approaches to security. Architecture 1 transmits message m on the same bus as the telematics unit is
located. Architecture 2 adds a dedicated connection for message m. Architecture 3 introduces a FlexRay bus for the transmission of message m.

introduced in Section 3, is performed with the probabilistic model
checking tool PRISM [12].

The computations for one property in the architectures and with
nmax = 2 require between 15 minutes and 1.5 hours on a conven-
tional desktop computer with an Intel Xeon quad-core processor at
3.2 GHz. Every PRISM computation runs as a single process with
negligible memory usage. The runtime correlates with the number
of states in the generated Markov model. The models for our exam-
ple architectures in Figure 4 have between 400,000 and 1.2 million
states. All results are given as the percentage of time the message m
is exploitable within 1 year.

4.1 Architecture Evaluation
We evaluate three different architectures that are based on real-

world systems. We only consider a relevant subsystem of the com-
plete vehicle architecture as illustrated in Figure 4. The considered
architectures comprise two bus systems connected by a gateway, a
telematics unit, and an automatic parking assistance application, in-
cluding 2 ECUs. The automatic parking assistant has been reduced
to one message stream transmitted between the parking assistant
controller and the power steering of the vehicle.
Architectures and Component Assessment. Architecture 1 resem-
bles the example in Figure 1. Since it is assumed that the security
of this system is not optimal, we also consider two alternative ar-
chitectures. In Architecture 2, the message stream m is sent via an
additional connection directly on CAN2, avoiding an exposure of the
stream on the bus that is directly connected to the telematics unit.
In Architecture 3, we replace the CAN bus with a time-triggered
FlexRay bus where a schedule is defined at design time with a fixed
assignment of slots to devices.

The exploitation and patching rates for our examples can be found
in Table 2. We assume that critical ECUs, such as the gateway and
the telematics unit, are hardened against attacks. The exploitation
rate of message m depends on the security features used. We consider
three variants: Unencrypted, Cipher-based Message Authentication
Code (CMAC) with 128 bit key and Advanced Encryption Standard
(AES) with 128 bit key. While an unencrypted message is instantly
exploitable, a CMAC protected message provides integrity, while an
AES protected message can ensure confidentiality.

The patching rates for all devices are based on the ASIL evaluation.
The resulting values are listed in Table 2.
Results. The results of our analysis are illustrated in Figure 5. It
can be observed that cryptographic hashing with CMAC 128 only
improves security in terms of integrity while encryption with AES
128 is effective for integrity and confidentiality. This validates our
results as cryptographic hashing only prevents creation of messages
while encryption also prevents reading.

In general it can be observed that neither cryptographic hashing
nor encryption improves the security values significantly. This is a
counter-intuitive result that can be explained as follows: By hacking
the Park Assist (PA), the cryptographic hashing and encryption, re-
spectively, are compromised and lose their effectiveness. Particularly
the relatively low patching rate of the PA due to its ASIL values
results in a high exploitability of the device.

Module Interface η
(CVSS v2 Vector)

ϕ
(ASIL)

Park Assistant (PA) CAN1/CAN2
/FR

1.2 (AV:A/AC:H/Au:S) 12 (C)

Power Steering (PS) CAN2 1.2 (AV:A/AC:H/Au:S) 4 (D)

Gateway (GW) CAN1/CAN2
/FR

1.2 (AV:A/AC:H/Au:S) 4 (D)

Telematics (3G) CAN1/FR 3.8 (AV:A/AC:L/Au:S) 52 (A)
3G 1.9 (AV:N/AC:H/Au:M) 52 (A)

FlexRay Bus
Guardian (BG)

local 0.2 (AV:L/AC:H/Au:S) 4 (D)

Message (m) unencrypted ∞ (instant) -
integrity CMAC128 1.2 (AV:A/AC:H/Au:S) -

AES128 1.2 (AV:A/AC:H/Au:S) -

Message (m) unencrypted ∞ (instant) -
confidentiality CMAC128 ∞ (instant) -

AES128 1.2 (AV:A/AC:H/Au:S) -

Table 2: Results of the security assessment for exploitation rates and patching
rates. Devices such as gateway, telematics unit and FlexRay Bus Guardian
are specifically hardened against attacks. Message assessment depends on
the mode to be evaluated (integrity, confidentiality). Message availability is
addressed through the underlying bus system.

It can further be observed that Architecture 2 does not improve
the security significantly in comparison with Architecture 1 and in
some cases it even becomes worse. Here, the low patching rates
of the PA and the Gateway (GW) lead to high exploitabilities of
these devices, resulting in an exposed CAN2. At the same time, the
PA in Architecture 2 is exposed to two buses resulting in higher
exploitability. Connecting the PA to CAN2 might even result in
further security issues as the device might be exploited as a bridge
to attack other functions. This would result in a significantly worse
security value for Architecture 2 for functions that are implemented
on CAN2 only.

In FlexRay, the existing bandwidth is divided in a time-triggered
manner. Devices can only transmit in their slot and are denied by the
bus guardian to transmit in other slots. This safety measure also has
a significant security impact as devices can not maliciously transmit
messages in other timeslots. This leads to an overall reduction of the
attack surface as devices which are part of the communication or the
bus guardian need to be infiltrated to attack message m.

4.2 Parameter Exploration
To evaluate the effect of different exploitability rates and patching

rates, we analyze the sensitivity of the exploitability of message m
in Architecture 1 to these rates for the entrance point ECU 3G. As
the 3G ECU is the entrance point to the architecture, the exploitation
rate of message m heavily depends on the exploitation and patching
rates for the 3G ECU. We independently analyze exploitation and
patching rates between once per decade (η3G = ϕ3G = 0.1) and once
per hour (η3G = ϕ3G = 8760). When varying the exploitation rate, the
patching rate is set to ϕ3G = 52; when varying the patching rate, the
exploitation rate is set to η3G = 1.9. The results are shown in Figure 6.
They exhibit exponential behavior. Hence, we can conclude that

31 2
0

0.01

0.1

12
.2

%

12
.2

%

9.
62

%

12
.2

%

12
.2

%

9.
62

%

6.
97

%

6.
97

%

7.
43

%

Architecture

E
xp

lo
ita

bi
lit

y
in

on
e

ye
ar

(r
at

e)
a) Confidentiality (read)

31 2

0.
66

8%

12
.2

%

9.
62

%

0.
38

8%

6.
97

%

7.
43

%

0.
38

8%

6.
97

%

7.
43

%

Architecture

b) Integrity (create/modify)

unencrypted
CMAC128

AES128

31 2

0.
66

8%

12
.2

%

9.
62

%

0.
66

8%

12
.2

%

9.
62

%

0.
66

8%

12
.2

%

9.
62

%

Architecture

c) Availability (interrupt)

Figure 5: Results of the analysis of the architectures shown in Figure 4. We analyze message m in terms of Confidentiality, Integrity and Availability for different
protection mechanisms (unencrypted, CMAC 128, AES 128) across all three architectures. Results clearly show less exploitation potential for better encryption
and more carefully designed architectures. In terms of availability, support from the bus system is required to ensure reasonable security.

0.1 10 1 000

0.01

0.1

1

component

assessment

(a) 3G patching rate (1/a)

m
ex

pl
oi

ta
bi

lit
y

0.1 10 1 000

component

assessment

(b) 3G exploitation rate (1/a)

Figure 6: Exploration of parameters to evaluate influence on complete ar-
chitecture security. In (a), the patching rate of the entrance point is varied,
while in (b), different strengths of security are employed in the telematics ECU
forming the start point to a vehicle attack.

while changes at the lower end of the exploitation resistance/patching
spectrum have a rather large impact on the system, higher rates do not
significantly help optimize security. Assuming a threshold of 0.5%
exploitability, a reasonable patching rate for an internet-connected
ECU without other access methods would be around ϕ = 6 (every 2
months). In case the exploitation rate is reduced by further securing
the device, an exploitation rate of maximum η = 12 (once a month)
needs to be guaranteed to keep exploitability under 0.5%.

Such an analysis can be performed for every element in the ar-
chitecture. Thus, depending on the architecture, devices can either
be hardened against attacks or patching rates can be contractually
agreed upon between the Original Equipment Manufacturer (OEM)
and suppliers.

4.3 Scalability
In verification approaches, the model size is usually a limiting

factor due to the exponential characteristic of the state space. On
the other hand, we showed that with an appropriate abstraction of
a function that involves the reduction to relevant components and a
single message stream, it is possible to evaluate realistic automotive
architectures in a reasonable amount of time.

While more complex functions that involve a higher number of de-
vices and components result in larger state spaces and runtimes, there
is plenty of potential to reduce these values significantly. Currently,
the PRISM model checker we use does not merge states with instanta-
neous transitions. These transitions are created when constructing the
system model from component submodels and do not exist in the real
world. Thus, they can be removed safely. Detecting states that can be
merged within a preprocessing step can reduce complexity further as
the number of states and runtime are strongly correlated in probabilis-
tic model checking. In summary, we showed that probabilistic model
checking is a feasible approach for quantifying security of automotive
architectures and our future work will address the scalability of the
approach.

5. CONCLUSION
In this work we have proposed a methodology for security anal-

ysis of automotive communication architectures. By analyzing the
system-level architecture at design-time, we can quantify the security
of every element in terms of confidentiality, integrity and availability.
The results of this analysis can help in design decisions for the overall
architecture and the security capabilities of components. For the first
time, the impact of individual components on the overall security
of an architecture can be determined. We analyze an architecture
by generating a corresponding Markov model. Edge weights are
determined through a security assessment of components. We define
security properties and analyze these over the model with a proba-
bilistic model checker. The results show that this method can be used
to find security flaws in architectures, which cannot be identified at
the component or subsystem level.

Future work will address scalability issues by the implementation
of a targeted model checker. With improved performance, we will be
capable of analyzing more fine grained models and more complex
systems, e.g., comprising Ethernet. Furthermore, we will be able to
generate a set of best practices for automotive architectures, based
on our security analysis. A combination of security and reliability
analysis, as well as the integration of ECU internal security measures
is planned.

6. REFERENCES
[1] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris,

S. Jha, T. Peyrin, A. Poschmann, and S. Chakraborty. Security challenges in
automotive hardware/software architecture design. In Prof. of DATE, 2013.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental
security analysis of a modern automobile. In Proc. of SP, 2010.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive experimental
analyses of automotive attack surfaces. In Proc. of USENIX Security, 2011.

[4] A. Wasicek, P. Derler, and E. A. Lee. Aspect-oriented modeling of attacks in
automotive cyber-physical systems. In Proc. of DAC, 2014.

[5] C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli. Security-aware
mapping for CAN-based real-time distributed automotive systems. In Proc. of
ICCAD, 2013.

[6] G. Han, H. Zeng, Y. Li, and W. Dou. SAFE: Security-aware flexray scheduling
engine. In Proc. of DATE, 2014.

[7] R. Zalman and A. Mayer. A secure but still safe and low cost automotive
communication technique. In Proc. of DAC, 2014.

[8] R. Ritchey and P. Ammann. Using model checking to analyze network
vulnerabilities. In Proc. of SP, 2000.

[9] G. Lowe. Towards a completeness result for model checking of security
protocols. Journal of computer security, 7(2):89–146, 1999.

[10] S. Basagiannis, P. Katsaros, A. Pombortsis, and N. Alexiou. Probabilistic model
checking for the quantification of DoS security threats. Computers & Security,
28(6):450–465, 2009.

[11] M. Schiffman, G. Eschelbeck, D. Ahmad, and S. Romanosky. CVSS: A Common
Vulnerability Scoring System. National Infrastructure Advisory Council (NIAC),
2004.

[12] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Proc. of CAV, 2011.

